Blog Layout

Success Story - Merchant Seaman

July 7, 2022

I was only in my first 3 months with Absolute Balance when this patient came into my world. He was also my first experience with rehabilitating a right ankle subtalar fusion. This workers compensation patient had a history of arthritis, which due to the nature of his job, had become significantly degenerative. As a merchant seaman (specializing in integrated rating), he spends months on end out at sea on large vessels delivering commercial goods.


The 54-year-old patient had been managing rheumatoid arthritis through conservative medical therapy, however after 18 months, the he was recommended to have surgery for the degenerative ankle, a surgery that would most likely inhibit him to ever run or jump again. The surgery would most definitely mean he would not be able to return to sea again.

So, imagine being told that you will never be able to do the thing you love and enjoy the most ever again? How would you take that? What would you do about it? Luckily, this patient had a never say never attitude and he had an Exercise Physiologist that had the same idea. So, in July 2021, eight weeks after having subtalar fusion, we commenced his rehabilitation journey.


Due to the type of surgery, the patient presented with limited to no range of movement and he indicated that he may not get any significant range of movement back. But what we could do is educate the patient on working around this barrier. After twelve weeks of being in a Cam Walker, we began rebuilding basic single leg strength and balance. As we progressed through the rehabilitation, achieving minor milestones each phase, the patient’s confidence began to grow along with the hope of returning to his pre-injury job.

The great part of this job is the opportunity to be creative and think laterally when it comes to how we can educate and rehabilitate patients through movements that they have never completed before or show the direct correlation from a pre-injury task to a replicated movement in the gym. Interestingly, two of the patients’ favourite exercises that he noticed the greatest correlation to his pre-injury task, was in fact a reverse sled drag and sled push. The patient and I saw benefit that by having a resisted load to drag, it yielded significant quadricep recruitment, combined with assisting in gait mechanics.


Each week he could lift and carry a little heavier, he could ambulate up and down steps that little quicker, he could kneel and crouch that little more repetitively and he could push and pull that little bit easier. The last hurdle was making the six-month review to make sure the bone graph had fully taken and completing a pre-employment medical.

We knew, the minute that tick of approval had come through it was go time for that medical assessment. So, we prepped for three weeks to complete that medical. We were confident the pre-injury role could be completed, we had visual media to show everyone that he could do it. Sure enough, after a 5 months journey of consistent and patient rehabilitation, I got the best phone call from the patient. “I passed, I’m going back to sea, thank you!”. My response “this was all your hard work; I just gave you some guidance to get there.” This outcome was a result of education, empowerment and engagement.


The patient let me know a few weeks later that he was getting redeployed back out to sea, on the ‘big boy’ he called it and that this was his final goal. We had got him back to where he wanted to be, back on the sea where he was most happy. That’s why we do what we do.


  Afiq Jackson

  Workers Compensation Specialist ‑ Team Leader North West (AEP, ESSAM)

  Exercise Rehabilitation Services ‑ WA

     


By Michael Andrews February 20, 2025
The Role of Load Management in Rehabilitation: A Framework for Returning to Function, and Injury Prevention. Load management is often associated with high performance sport, but its principles are just as critical in rehabilitation. Whether guiding injured workers back to work, older adults to independent living, or patients recovering from injuries, progressively and systematically managing load is essential for recovery, injury prevention, and long-term function. A major challenge in rehabilitation is balancing workload progression to optimise adaptation without overloading healing tissues. Sudden spikes in training load or returning to full activity too soon significantly increase the risk of re-injury. Exercise physiologists can use load monitoring, periodisation, and predictive planning to ensure a structured and safe return to work, life, or recreational activity. Understanding Load and How to Monitor It In rehabilitation, load refers to the total amount of mechanical and physiological stress placed on the body. This includes external load; the measurable work performed (e.g., weight lifted, steps taken, distance covered, time spent in physical activity), and internal load; the body’s physiological and perceptual response to that work (e.g., heart rate, rate of perceived exertion (RPE), pain, fatigue). Both external and internal load must be monitored to ensure that rehabilitation is progressive yet not excessive. One of the most useful frameworks for load management is the Acute: Chronic Workload Ratio (ACWR), which helps determine whether a patient is progressing at a safe rate or at risk of overload. A sudden spike in acute load (ACWR >1.5) increases injury risk by 2-4 times in the following week. Therefore, a gradual increase in chronic load (≤10% per week) is essential to build resilience and capacity. - Acute Load = The total workload over the past week. - Chronic Load = The rolling 4-week average of workload. - ACWR = Acute Load ÷ Chronic Load. Patients often underestimate how small spikes in activity (e.g., resuming full work shifts after time off, or inconsistent engagement in their self-management plan) can lead to flare-ups or re-injury, and by tracking ACWR, we can educate the patient accordingly and prevent excessive acute spikes while ensuring a steady increase in chronic workload, reducing the likelihood of setbacks and ensuring a progressive return to function. To apply these principles effectively, we need accurate and practical ways to measure and track load in real world rehabilitation settings. Unlike athletic settings, maximal strength testing (1RM) is often inappropriate in rehabilitation. Alternative methods include volume-based and time-based load tracking, perceived exertion and fatigue monitoring, and functional testing. - Monitoring total weight lifted per session (sets × reps × resistance). - Measuring time under tension for endurance-based activities. - Using exercise RPE and session RPE to gauge effort. - Reassessing movement capacity, endurance, and strength progression over time. Using subjective feedback alongside objective load tracking allows for better exercise prescription and progression. Asking the right questions can guide real-time modifications: External Load Questions: - How much activity did you complete this week? - How does this compare to last week? - Did you struggle with any tasks or exercises? Internal Load Questions: - How fatigued do you feel after sessions? - How long does it take you to recover? - Are you experiencing pain or discomfort, and how does it change with activity? Structuring Load Progression for Long-Term Success Periodisation is the planned progression of training load over time, ensuring continued adaptation without excessive strain. While typically used in athletic settings, structured periodisation is just as valuable in rehabilitation, helping prevent stagnation by adjusting workload over time, ensuring progressive overload while respecting tissue healing and recovery rates, and guiding return-to-work planning by matching rehabilitation loads with real-world demands. A structured approach allows us to compare a patient’s current workload tolerance to their end goal and reverse-engineer a safe progression plan. If a patient needs to tolerate X hours of work or Y level of activity, we can use their current capacity and reverse-calculate a safe, gradual progression timeline and by maintaining consistent, small increases in chronic workload, we minimise setbacks and ensure safe long-term recovery. Linear Periodisation is best suited for straightforward recovery cases with minimal variability in symptoms. While, nonlinear periodisation may be more practical for rehabilitation, as symptoms and capacity can vary day-to-day. - Linear Periodisation: Steady, predictable increases in intensity, volume, or duration over time. - Nonlinear (Undulating) Periodisation: Load fluctuates based on recovery, pain, and function. Applying Periodisation to Rehabilitation Planning Step 1: Establish a Baseline Identify current weekly workload (e.g., hours of tolerated activity, steps, resistance training volume) and functional deficits (e.g., strength, endurance, movement capacity). Step 2: Define the End Goal What workload is required to return to work, sport, or daily function? This could mean sustaining an 8-hour work shift, lifting a certain weight, or tolerating daily activities without pain. Step 3: Plan a Safe Progression Gradually increase chronic workload by ≤10% per week. Avoiding acute spikes (ACWR >1.5) to prevent setbacks. Monitor pain, fatigue, and function to guide daily and weekly adjustments. By integrating load monitoring, periodisation, and predictive planning, exercise physiologists can create safe, structured rehabilitation programs that optimise recovery, prevent re-injury, and guide patients back to work, sport, or daily life with confidence. Key Takeaways for Exercise Physiologists - Load management is essential in rehabilitation, not just in sports. - Acute vs. chronic load balance is key. Avoiding acute spikes prevents injury, while gradual increases build resilience. - Tracking external and internal load ensures a data-driven approach to exercise prescription. - Periodisation structures rehabilitation progression, ensuring steady gains without excessive strain. - Patient education on workload progression improves compliance and reduces re-injury risk. References Impellizzeri, F. M., Menaspà, P., Coutts, A. J., Kalkhoven, J., & Menaspà, M. J. (2020). Training load and its role in injury prevention, part I: back to the future. Journal of athletic training, 55(9), 885-892. Gabbett, T. J., Kennelly, S., Sheehan, J., Hawkins, R., Milsom, J., King, E., ... & Ekstrand, J. (2016). If overuse injury is a ‘training load error’, should undertraining be viewed the same way?. British Journal of Sports Medicine, 50(17), 1017-1018. Windt, J., & Gabbett, T. J. (2017). How do training and competition workloads relate to injury? The workload—injury aetiology model. British journal of sports medicine, 51(5), 428-435. Jildeh, T. R. (2024). Editorial commentary: load management is essential to prevent season-ending injuries in the National Basketball Association. Arthroscopy, 40(9), 2474-2476. Bache-Mathiesen, L. K., Andersen, T. E., Dalen-Lorentsen, T., Tabben, M., Chamari, K., Clarsen, B., & Fagerland, M. W. (2023). A new statistical approach to training load and injury risk: separating the acute from the chronic load. Biology of sport, 41(1), 119-134. Williams, S., West, S., Cross, M. J., & Stokes, K. A. (2017). Better way to determine the acute: chronic workload ratio?. British journal of sports medicine, 51(3), 209-210. Carey, D. L., Ong, K., Whiteley, R., Crossley, K. M., Crow, J., & Morris, M. E. (2018). Predictive modelling of training loads and injury in Australian football. International Journal of Computer Science in Sport, 17(1), 49-66. Impellizzeri, F. M., Shrier, I., McLaren, S. J., Coutts, A. J., McCall, A., Slattery, K., ... & Kalkhoven, J. T. (2023). Understanding training load as exposure and dose. Sports Medicine, 53(9), 1667-1679. Lorenz, D. S., Reiman, M. P., & Walker, J. C. (2010). Periodization: current review and suggested implementation for athletic rehabilitation. Sports Health, 2(6), 509-518. April Hawser Exercise Physiologist Exercise Rehabilitation Services – NSW
February 7, 2025
How would I rehabilitate a wrist, hand or finger injury? Rehabilitating a hand injury is challenging due to the hand's essential role in daily tasks, including heavy lifting and precise movements. So, what are some key focuses to prioritise with rehabilitation of the hand and wrist? Understanding hand anatomy is essential. The hand consists of 27 bones: 8 carpal bones (wrist base), 5 metacarpals (palm), and 14 phalanges (fingers), all connected by ligaments and serving as tendon attachments. When an upper limb injury occurs, immobilization is necessary for recovery. This leads to reduced upper limb use, resulting in muscle atrophy, decreased strength and feelings of tightness or stiffness, along with discomfort. Not every movement requires a 'power' grip for strength and endurance restoration. Rehabilitation stages may involve using various objects to challenge the grip, facilitating a transition to dynamic everyday strength. The hand, as the most proximal structure of the upper limb, is crucial for daily tasks and fine motor control. A little tip that can help improve someone’s rehabilitation is implementing exercises that can incorporate a ball, broomstick or even different types of stationary! Rehabilitation for fingers, hands, and wrists varies for each individual.  A tailored approach, sometimes requiring minimal intervention or creative solutions, can lead to optimal outcomes. Afiq Jackson Workers Compensation Specialist ‑ Team Leader North West (AEP, ESSAM) Exercise Rehabilitation Services ‑ WA
January 31, 2025
Joining a sports club or team provides an opportunity to integrate into a community where you can forge lasting relationships. This experience can offer a sense of purpose and belonging. Below are three separate occasions that illustrate how joining a rugby club and a squash club positively influenced my life: Occasion 1: I began my university journey in a new city, knowing only a few friends from school. After taking a gap year in New Zealand, my school friends had already formed new connections at university, having started a year before me. One sunny morning at the beach, I was invited to join a touch rugby game with people I had never met. Fast forward three years, and the new acquaintances I made that day had become lifelong friends through my involvement at the local rugby club they played for. Participating in that touch rugby game allowed me to connect with like-minded individuals, which led to me joining the rugby club and giving me a sense of purpose and direction during my early university years. Occasion 2: After graduating from university, I relocated to a new city to embark on my first real job. Drawing from my past experiences, I sought out the nearest squash club, having given up rugby due to an injury. Just like before, within two days of becoming a member of the local squash club, I received invitations to lunch and social gatherings at the homes of fellow players. Along with connecting with a wonderful group of individuals, the regular exercise and my commitment to a team that I had to show up for each week provided me with a similar sense of purpose I had experienced during my rugby club days. This experience was essential in helping me become the best version of myself. Occasion 3: The final and perhaps the most significant moment to reflect on was when I relocated to a larger, busier city to advance my career. During this transition, I reconnected with an old friend from a previous club who had taken up running. Naturally, I joined him for a few runs, quickly bonding with the running group. After a year, I became involved in this running community, which ultimately resulted in my moving into a new home and meeting my now-wife! To sum up, the potential that sports and exercise offer is limitless. In any setting filled with like-minded individuals, the possibilities are endless! I hope this blog inspires you to finally join that gym or sport you've been interested in for all these years! Michael Andrews Business Development Manager
More Posts
Share by: