Blog Layout

Mirror Box Therapy

Dec 07, 2020

Mirror box therapy is derived from the use of a mirror to reflect the use of a normal functioning limb to trick the brain to reinforce movement without pain. It involves placing the affected limb inside a box or covered with the reflective side displaying the “working limb” back to the person. From their perspective, they see two fully functional limbs. This type of therapy has been widely used for people with amputated limbs who experience phantom limb pain, complex regional pain syndrome and people recovering from stroke.

Phantom limb pain is where a person feels painful sensations from a limb that is no longer there. The mechanisms of phantom limb pain are not widely understood; however it is thought to be due to peripheral mechanisms due to the injury-causing disrupted input from afferent nerves back to the spinal cord and changed in central neural mechanisms. Mirror box therapy can assist people with phantom limb pain by using the mirror to assist with visual feedback making it real for the patient to see movement and move the “phantom limb”. They receive feedback through vision and proprioception which assist the person to see real movement and that this can occur without pain. The idea is to trick the brain to remodel the cortical systems that may provide relief through visual dominance of the motor-sensory process and activation of mirror neurons through visual movement.

There are some limitations to the use of mirror therapy in rehabilitation with restrictions to the location of injury as well as the extent of injury and the variety of pathologies that induce pain. Mirror box therapy can be easily added into exercise-based routines using active or passive range of motion movements and other exercises for patients based on their level of ability. It is best to consult an accredited exercise physiologist prior to undertaking treatment.

Taylor Downes |B. HM. | GradDipClinExPhys|

Accredited Exercise Physiologist (AEP) (ESSAM)

 

Najiha, A., Alagesan, J., Rathod, VJ., Paranthaman, P. Mirror Therapy: A review of evidences. IntJ Physiother Res 2015;3(3):1086-1090. DOI: 10.16965/ijpr.2015.148

Subedi, B., & Grossberg, G. T. (2011). Phantom limb pain: mechanisms and treatment approaches. Pain research and treatment, 2011, 864605. https://doi.org/10.1155/2011/864605

O’Connell  NE, Wand  BM, McAuley  JH, Marston  L, Moseley  GL. Interventions for treating pain and disability in adults with complex regional pain syndrome‐ an overview of systematic reviews. Cochrane Database of Systematic Reviews 2013, Issue 4. Art. No.: CD009416. DOI: 10.1002/14651858.CD009416.pub2.

By Alison Absolute Balance 24 Apr, 2024
The human body is designed to move in a three-dimensional plane divided into the following segments: Sagittal Plane: Cuts the body into left and right halves. Forward and backward movements. Frontal Plane: Cuts the body into front and back halves. Side to side movements. Transverse Plane: Cuts the body into top and bottom halves. Twisting/rotational movements. Too often we get caught training mostly in a sagittal plane, think running, squats, bicep curls etc. While these are all good exercises, in day-to-day life we don’t only move along a sagittal plane. What happens when you need to quickly get out of the way of the e-scooter flying towards you on the foot path or make a quick sidestep to avoid a pothole – these movements are along the frontal plane. While movements such as turning to check your blind spot while driving or turning to talk to the person next to us are in the transverse plane. When it comes to injury prevention and movement efficiency it is important to incorporate exercises from all planes of movement into training programs. Sagittal If a line ran down the middle of the body splitting it from left to right, movements parallel to this line are within the sagittal plane of movement. The sagittal plane is the most common plane of movement and is trained overwhelming more than the frontal and transverse planes of movement. Movements/exercises considered to be in the sagittal plane include running, squats, deadlifts and bicep curls. Now while all these exercises are good, with the way our lives having evolved into many desk sitting roles, driving from place to place etc, to then go to the gym and focus heavily on movements that are predominantly up – down, and forwards – backwards we can end up reinforcing these pathways and becoming somewhat robotic, heavily limiting our natural movements. Frontal If a line ran down the middle of the body splitting it into front and back, movements parallel to this line would be within the frontal plane of movement – essentially any movement that involves moving away from or towards the midline. Often neglected in strength programs, frontal plane exercises include Cossack squats, lateral lunges, and side raises. Transverse If a line split the body in half separating it into top and bottom with the pelvis being the point of division, any movement parallel to this line would be considered to be in the transverse plane of movement. Movement along/through a transverse plane is generally more rotational such as a Russian twist or trunk twist. By focussing largely on sagittal plane movements, we are risking developing muscle imbalances, limited mobility and uncoordinated movements in the neglected planes. Our body is designed to move on a 3-dimensional plane so make sure to train in a way that will allow it to move the way it’s supposed to. Katie McGrath Injury Prevention Specialist Injury Prevention Services
18 Apr, 2024
Stretching and mobility exercises are indispensable components of both injury prevention and recovery strategies. Incorporating dynamic stretches before physical activity can help prepare the body for movement by increasing blood flow to muscles and enhancing joint flexibility. This dynamic warm-up routine primes the muscles and connective tissues, reducing the risk of injury during subsequent activity. Furthermore, static stretches, performed after physical activity, helps alleviate muscle tension and improve flexibility, thereby minimizing the likelihood of strains and tears. In the realm of injury recovery, stretching and mobility exercises play a crucial role in rehabilitation protocols for individuals recuperating from various musculoskeletal injuries. Following an injury, muscles can become tight and weakened due to disuse or trauma. Gentle stretching exercises aid in maintaining or restoring flexibility, preventing muscle atrophy and contractures. Additionally, targeted mobility exercises assist in restoring range of motion and functional movement patterns, allowing individuals to gradually regain strength and flexibility while reducing the risk of re-injury. Moreover, stretching and mobility exercises promote tissue healing by improving circulation to the injured area. Increased blood flow delivers essential nutrients and oxygen to damaged tissues, facilitating the repair process and reducing inflammation. By incorporating a comprehensive stretching and mobility routine into their regimen, individuals not only safeguard themselves against future injuries but also expedite their recovery journey, enabling them to return to their activities with greater resilience and confidence. Mariah Adolphus Workers Compensation Specialist (AEP, ESSAM) Exercise Rehabilitation Services ‑ WA
05 Apr, 2024
Hey, my name is Blake, and I am an Exercise Physiologist, Workers Compensation Specialist and Clinical Team Leader at Absolute Balance. I graduated from Edith Cowan University in 2015 after completed my Bachelor of Science (Exercise Science and Rehabilitation). I grew up on a farm Northeast of Perth past Gingin with my parents and two brothers, both of which are back working on the farm, which has been in our family for generations. My love for sport and interest in the human body initially prompted me to complete my Bachelors in Exercise and Sports Science, and my initial thoughts on a career were either Physiotherapy or Phys Ed Teacher. However, this quickly changed when I commenced my first Exercise Physiology unit in my Sports Science degree as it opened my eyes to exercise rehabilitation, and how important it was to individuals with injuries. Having experienced multiple injuries personally playing football (AFL), basketball and tennis, I can fully empathise with how much injuries can impact your life. Being an EP and being in a role where I can make a positive and meaningful impact on individual’s lives who have sustained an injury is extremely important to me. This doesn’t only extend to the patients I see, but also the team members I lead within Absolute Balance. I guide a team of five in the Northeast region at Absolute Balance, assisting them with their own patients and leading them to grow as Exercise Physiologists and individuals. Although it has its challenges, leadership is extremely rewarding and has helped me grow both personally and professionally. Whilst I am not at work, I am spending my time at the gym, at football training and games during February-September (or in the car travelling to and from comes with the gig of country football), spending time with my wife and our dog Otis. I spend the other half of my weekend manicuring my lawn and watching good shows and sports. Blake Cocking Workers Compensation Specialist ‑ Team Leader North East (AEP, ESSAM) Exercise Rehabilitation Services ‑ WA
More Posts
Share by: